Is my anti-skating too strong.


I’m trying to adjust the alignment of the Ortofon Black Quintet cartridge on my Music Hall mmf 9.3 turntable.  When I put the stylus down on the alignment protractor, the tone arm pulls to the outer edge of the turntable.   Should I disable anti skating when doing alignment or is it set too strong?  Obviously haven’t done this too often.
Also, when listening to the anti skating track on The Ultimate Analogue Test LP, there is noticeable distortion at the end of the track which indicates too much or too little anti skating.  Any guidance here?
udog
Post removed 
@larryi2    

It should also be noted that the amount of anti-skate needed can vary from record to record and even across the surface of a given record.  So a general estimate is all that may be possible.  And once that happy medium is found, it's very doubtful that even a careful listener will hear the difference from record to record.
@bpoletti , doubtful? Michael Fremer can:-)  I have a Schroder tonearm so you know where my affections lay. 

I am not sure where the 10% of VTF came from but It seems to be the consensus in the industry. 
I use to use a test record with four increasing groove velocities. The consensus is that this overestimates antiskating but then wouldn't you want the antiskating set to track the most difficult passages? The issue is after all tracking or miss tracking. The lower velocities will track fine even if the anti skate is overestimated. It is nice to have a specific target number (even if it is just an averaged value) Makes me feel better.

@larryi , I really like your analogy with the arm. I think it is easier for people to understand than the water-skier analogy. 

Can a tonearm be made that does not skate? Theoretically yes, in reality probably not. But, you certainly can make one that skates very little. The Reed 5T and Schroder LT are good examples. They have to be perfectly set up and the tonearm has to be dead level. Keeping everything perfect is an impossibility so, there is always going to be a small amount of skating...that only Michael Fremer can hear.
Mijostyn,

I also find the Reed T5 and Schroder LT approach interesting.  Both arms are based on the Thales circle geometry and achieve close to perfect tangency and do so without an offset angle that creates skating force.  At least theoretically,  the Reed T5 is a touch more elegant because the movement of the arm pivot is achieve by using a laser sensor to detect loss of tangency and a motor to then rotate the arm base to move the pivot point, while the Schroder LT requires the arm to pull the base into a new position.  Of course, the simplicity of the Schroder approach is a big plus for that design.  If I were to change my arm (Vector 3), I would certainly consider both of these arms.  About three years ago, I talked to a Reed representative at a show and found out about the bad news on the T-5--it costs something like $18k.
Saw the post from lewm from a while back. Yes lewm I do read what I write. The problem is not the writing. The problem is comprehending. Of which there is a lot of on this thread.    

Skating forces are generated just like I said, by the stylus overhanging past the tangent. When the stylus is tangent then the force of dragging through the groove is in line with the arm pivot and there is no skating force pulling towards the center.    

But all cartridges have over hang. That is why we call it overhang adjustment. Because of this overhang the stylus is always on the groove past the point of tangency. Because of this there is always a vector force towards the center. This is the skating force.   

Now lewm, this is where you want to pay extra special attention. The cartridge can be mounted on the arm pointing any direction. It can be angled in, or out, or at right angles- or backwards for all that matters. As long as the stylus is always in the same overhang position then there will always be the same skating force.     

Nothing to do with the cantilever. That is a whole different subject. This is where people screw other people up. Got to keep each thing straight. 

Now that everyone understands skating force comes from overhang, it should be obvious Fremer is right. (Or at any rate what Mike says Fremer says is right.) Because the skating force comes from overhang, then the greater the drag on the stylus the greater the skating force.  

This is why a blank record is no way to set anti-skate. A blank record has a lot less drag than a groove. A highly modulated groove has a lot more drag than a silent groove. Understand all this and it should be obvious there is no way to use VTF to calculate anti-skate, other than as a crude ballpark estimate. 

Please guys, don't make this harder than it has to be!