Why are low impedance speakers harder to drive than high impedance speakers


I don't understand the electrical reason for this. I look at it from a mechanical point of view. If I have a spring that is of less resistance, and push it with my hand, it takes little effort, and I am not working hard to push it. When I have a stiffer spring (higher resistance)  I have to work harder to push it. This is inversely proportional when we are looking at amplifier/speaker values.

So, when I look at a speaker with an 8 ohm rating, it is easier to drive than a speaker with a 4 ohm load. This does not make sense to me, although I know it to be true. I have yet been able to have it explained to me that makes it clear.  Can someone explain this to me in a manner that does not require an EE degree?

Thanks

128x128crazyeddy
Hi Charles,

Usually it comes down to approach: picking the speaker you love and then finding the right amp or vice versa, or in a fortuitous alignment of skill and circumstance, finding both without significant compromise.

Best to you Charles,
Dave
bdp24 1-8-2017
For instance, the original Quad ESL's nominal impedance was 16 ohms, but it’s impedance rose to 60 ohms at low frequencies, and fell to 1.8 ohms at high frequencies---anything but an easy load! That impedance characteristic is one reason the sound of the Quad ESL is so affected by the amp driving it, and why almost no solid state amp is a good match---it makes for overblown bass and missing highs.
BDP, a minor correction to your characteristically excellent inputs.  The last phrase should be "it makes for missing bass and overblown highs."  As you no doubt realize, and aside from some rare exceptions, in comparison with a tube amp a solid state amp will deliver more power into low impedances and less power into high impedances, for a given input signal level.

Best regards,
-- Al
 
 ^ Lest anyone get the idea that the increase/decrease of power output by ss amps into decreased/increased impedances would suggest that frequency linearity would be compromised, the opposite is actually the case, they actually provide better frequency linearity. Most typical speakers will decrease/increase their sensitivity in direct proportion to the increased/decreased impedance changes.
 Furthermore, there are many other considerations that speaker designers need to consider besides impedance. With the advent of amplification that can adjust power output to speaker impedance/sensitivity, speakers designers were now able to permit more attention on other speaker considerations such as wave form fidelity, dispersion characteristics, box resonances, etc..
Most typical speakers will decrease/increase their sensitivity in direct proportion to the increased/decreased impedance changes.
Electrostatics being a notable exception, though, including the ESL-57 which bdp24 was referring to.  Some other exceptions are referred to in the Paradigms In Amplifier Design paper Ralph has often referred to.

In the case of speakers that have been designed to sound their best when driven by tube amplification, such as the ESL-57 (which was designed before solid state amplification existed), frequency response at the output of the speaker may very well be most flat when the frequency response of the signal provided to the input of the speaker is not flat.  In voltage terms, that is.

Best regards,
-- Al