Why are low impedance speakers harder to drive than high impedance speakers


I don't understand the electrical reason for this. I look at it from a mechanical point of view. If I have a spring that is of less resistance, and push it with my hand, it takes little effort, and I am not working hard to push it. When I have a stiffer spring (higher resistance)  I have to work harder to push it. This is inversely proportional when we are looking at amplifier/speaker values.

So, when I look at a speaker with an 8 ohm rating, it is easier to drive than a speaker with a 4 ohm load. This does not make sense to me, although I know it to be true. I have yet been able to have it explained to me that makes it clear.  Can someone explain this to me in a manner that does not require an EE degree?

Thanks

128x128crazyeddy
you took my statement out of context. Here is what I actually said:
Yes- it was not to contradict you, but to use the phrase as a talking point, as I see that approach recommended a lot. Then later people sell off the gear in search of that holy grail... I think if you start with the grail first you're less likely to sell and waste the cash.
Atmashere, the OP said nothing of ESL's. I did make mention of : "Most typical speakers...."
Correct- in fact by 'most typical' is about 95% of the market. In high end, its still about 85% and so is 'mostly accurate' :)

For those outside of that percentage (Charlesdad's speakers are box speakers but they are an example) that voltage thing just does not work. This is entirely due to the designer wanting the speaker to work with a particular kind of amp. In Charlesdad's case, the speakers were originally envisioned on a set of our M-60s and later that manufacturer started making SETs, which work much the same way. SETs in general are much happier on higher impedance loads despite often having 4 ohm taps and they tend to make constant power rather than constant voltage owing to zero loop feedback.

In a tube amp, the 4 ohm tap is not an efficient way to use the output transformer, which often means not only less power (lost due to heat) but also less bandwidth, sometimes up to an octave lost on the bottom end. So its often really worthwhile to avoid low impedance speakers with tube amps even if you have the taps on the output transformer!
atmosphere: "One other point not previously mentioned is the effect of speaker cables! At lower impedances they tend to be far more critical, where shorter distances and much larger gauges are required to prevent loss of definition and impact. This can be a pretty big deal as the series resistance of the speaker cable can have a pretty dramatic effect on the effective output impedance of the amplifier! By contrast the speaker cables are far less critical at 16 ohms- which is why a lot of us kids got by with hardware store zip cord in the old days."

At the risk of taking this thread into the contemptuous nether regions of many others (please no!), this may explain a lot regarding contrary experiences of many on this forum regarding speaker cables' impact on sound.

Good point Ralph.

Dave 

Not sure anyone cares about this, but I thought I would chime in with more information now.

In general, many good drivers are available in 4 and 8 Ohm versions. When this is true, the 4 Ohm is usually 3 dB more sensitive. The low impedance causes extra current flow which provides for increased force against the same magnet. The choice here usually has to do with whether designers will put them in parallel and matching other drivers in the system with less wasted heat.

Some speakers really can't help it. Like ESL's. Essentially they are moving capacitors. The Apogees of old were/are essentially just wires suspended n a magnetic field. Getting up to 1 Ohm impedance was as high as they could get!  Any decrease in the current (i.e. increased impedance) would cut the force down proportionately.

In some cases I have seen crossover design deliberately lower impedance to below 4 Ohms to make speakers seem more "discerning" or "demanding." This added nothing to the sound quality of them. They just added to the snobby appeal.

Best,

E (yes, I'm a snob)
When this is true, the 4 Ohm is usually 3 dB more sensitive. The low impedance causes extra current flow which provides for increased force against the same magnet.
This seems to require clarification!

Given two drivers of the same **efficiency** (1 watt, 1 meter), if one is 8 ohms and the other is 4, the 4 ohm unit will be 3 db more **sensitive** (sensitivity is measured at 2.83Volts at 1 meter; if this is 8 ohms that is one watt, at 4 ohms its two watts; two watts is double one watt and there is your 3 db ).

That current will not flow as expected by the speaker designer if the amplifier output impedance is higher than about zero ohms. This is because as the output impedance is increased, more and more power will be dissipated in the output section of the amp rather than the load- dissipated in the form of heat.

That’s a lot of amps! In particular, this is especially true of tube amps, whose output impedance can often be measured in ohms rather than fractions of an ohm. One might ask, ’what is the point of such an amplifier?’ and the answer has to do with how humans perceive sound.

In a nutshell, we perceive volume, or sound pressure, by listening for the higher-ordered harmonics. This is because pure tones do not exist in nature, and apparently nature sorted out millions of years ago that listening for the higher-ordered harmonics is more expedient, as it would millions of years before anyone invented pure fundamental tones :)

BTW this is very easy to prove with simple test equipment and is not a matter of debate. I’ve posted the way to prove this a number of times on this site.

Since this is the case, a good number of designers (myself included) prefer to design amps that by intention do not make the higher ordered harmonics. To do this often requires a higher output impedance, because to do that means avoiding loop negative feedback (which is known to enhance higher orders and generate more of them at the same time; see Norman Crowhurst). Loop feedback lowers output impedance; without it the output impedance is therefore higher.

It also happens that it is far easier to design such an amplifier by avoiding the use of semiconductors in the signal path. Semiconductors have non-linear capacitive elements inherent in their junctions (magnified by current through the junction) and these are known to create higher ordered harmonics in the distortion structure of the device (FETs and MOSFETs far less so than conventional bipolar devices; a particular device known as a varactor takes advantage of this aspect and is used as a variable capacitance to tune radio receivers).

The bottom line is that if you are dealing with an amplifier designed to not make higher ordered harmonics (as opposed to just low THD in general), the usual voltage rules as defined in the quote above simply don’t work (and I explained why in my second paragraph). Put another way as a speaker designer you have to pay attention to driver efficiency rather than sensitivity.

This is why back in the old days, many speakers had mid and tweeter level controls. They were not there to adjust the speaker to the room, they were there to adjust the speaker to an amplifier of unknown voltage response (high output impedance).

The approach is trickier, but has the advantage of less overall audible distortion (which the ear converts to tonality, often favoring that tonality over actual frequency response errors!).

In most cases this design approach is to avoid ’brightness’ and ’harshness’; two audiophile terms used to describe the presence of trace amounts of higher ordered harmonic distortion.

The way I see it, if a system **always** has brightness (which will be found to not be toned down by a treble control because it does not arise from a frequency response error) then the best it will sound will be like a nice stereo rather than real music.

Again, this all comes down to intention. Is your intention to get the system to sound as good as it can or is it more important to simply play loudly? If the former, than some of the lower impedance speakers and higher power transistor amps will be of interest; if the former, then you will be very careful to be matching the speaker to the amplifier (and not the other way ’round) and most likely avoiding lower impedances in general.