Why Palladium in cables, wiring, etc. . .?


There seems to be a growing aura around Palladium. A perfectly good noble metal, Palladium came to popular fame during the now very dubious episode of cold fusion, proposed by Martin Fleischmann and Stanley Ponse. But the word Palladium itself has a much older and classical origin. A Palladium was originally a statue bearing the likeness of the goddes Pallas, and only much later it referred to buildings inspired by the neo-classical style of Andrea Palladio. Today the word bears both connotations of classical understated elegance as well as hinting at quasi esoteric neo-science and mysteries. Hence it is easy to understand why savvy marketing consultants may warmly recommend that products and brands aspiring to prestige may be named after the metal.

Yet, when it comes to discovering a physical reason why engineers may opt to actually employing this fine metallic element as a conductor in interconnects, chords, wires and electrical contacts, things become rather murky and unclear. For example, SilverSmith Audio now advertises some of its products as containing Palladium. And the newest iteration of the Dodson 218 DAC, by virtue of the company having been purchased by SilverSmith, now sports internal Palladium-alloy wiring.

What is it, besides its resistance to tarnish and corrosion, and the obvious aura in the name, that is causing such engineering choices? Palladium's disconcertingly high index of resistivity does not seem to justify its selection. Per the list below, Palladium is 6.65 times as resistive as
Silver, 6.28 times as resistive as copper, almost 4 times as resistive as Aluminum, and
approximately 10% more resistive than Iron. The good news is that Palladium appears
to be a little bit more conductive than Tin, and almost twice as conductive as Lead.

Resistivity:
Silver: (20 °C) 15.87 nO·m
Copper: (20 °C) 16.78 nO·m
Gold: (20 °C) 22.14 nO·m
Aluminum: (20 °C) 26.50 nO·m
Rhodium: (0 °C) 43.3 nO·m
Zinc: (20 °C) 59.0 nO·m
Nickel: (20 °C) 69.3 nO·m
Iron: (20 °C) 96.1 nO·m
Platinum: (20 °C) 105 nO·m
Palladium: (20 °C) 105.4 nO·m
Tin: (0 °C) 115 nO·m
Lead: (20 °C) 208 nO·m

Any ideas?
guidocorona
I will stick to old fashioned highly conductive copper and silver... Except for resisting to corrosion, looking pretty, and being outrageously expensive, Palladium is even less conductive than Iron.

G.

S.
I have no idea about either the physical/theoretical properties of the material, nor the supposed sonic attributes. I find it amazing how much speculation one finds in this thread based on the physical properties of the material when all bets are off when one is talking about alloys.
You are right Larryi, I have no real information about the conductive properties of semi-liquid Indium-Gallium alloys... But I heard a system at RMAF all wired with these kinds of metallurgy... Probably the single worst sound that I ever heard in a "high-end" context.... Was it the wires, the electronics, the speakers? Who knows... The whole thing felt positively horrid to my ears.

G.
Using your logic, the relative "sound" of any cable should follow your chart, silver sounding "best" and lead "worst". That is; the better the conductivity, the better the sound.

But are there parameters, other than conductivity that need to be considered? For instance, I've heard silver wires I've liked and others not so much. Same conductivity but obviously there were other factors affecting the "sound".
Hi RJA, you bring up an interesting point... I conjecture that Silver, with its maximum conductivity, might sound best.... If the electronics of all recording equipment also used silver copiusly, and recording engineers routinely tuned and optimized their work to Silver metallurgy.... But most recording equipment and recording engineering is tuned to copper metallurgy... Hence the playback advantages of Silver remain a hit and miss situation.