Neil Young calls out Tidal



TIDAL is calling their files of my songs Masters. But TIDAL’s MQA files are not my masters. I make my masters - not TIDAL. I made my masters the way I wanted them to sound. If TIDAL referred to their titles as TIDAL MASTERS, I would have no problem, but they don’t. They call them Masters. I had my music removed from that platform. They are not my masters.”.

https://www.realhd-audio.com/wp-content/uploads/2021/01/210118_NYA.jpg

128x128fuzztone

Hov much money are you getting from Putin, you devil you?

mahgister KGB mole since cold war..

go bear wrestle with Putin - suffer many head trauma..

 

cDNA does not present the same obstacles to patentability as naturally occurring, isolated DNA segments. As already explained, creation of a cDNA sequence from mRNA results in an exons-only molecule that is not naturally occurring.8 Petitioners concede that cDNA differs from natural DNA in that “the non-coding regions have

 

been removed.” Brief for Petitioners 49. They nevertheless argue that cDNA is not patent eligible because “[t]he nucleotide sequence of cDNA is dictated by nature, not by the lab technician.” Id., at 51. That may be so, but the lab technician unquestionably creates something new when cDNA is made. cDNA retains the naturally occurring exons of DNA, but it is distinct from the DNA from which it was derived. As a result, cDNA is not a “product of nature” and is patent eligible under §101, except insofar as very short series of DNA may have no intervening introns to remove when creating cDNA. In that situation, a short strand of cDNA may be indistinguishable from natural DNA.9

 

@pesky_wabbit  2013 Supreme Court decision, that established precedent that natural DNA after introduction of MRNA creates cDNA, Complementary DNA that is a patentable/tradeable commodity. Pfizer now owns you, literally, figuratively, and legally,  

@pesky_wabbit  you are now a GMO. 

Megan Krench

In a unanimous decision last month, the Supreme Court ruled that naturally occurring genes are not patentable. But, said the Court, cDNA, a man-made copy of the genetic messenger in cells, is patentable. As a geneticist, I have my own opinions about this ruling. But the potential outcomes are important enough that all members of the public, not just biologists, should be equipped with the knowledge to evaluate it. The ruling may significantly affect patients’ access to genetic testing, and it sets an important precedent for future developments in the biotechnology sector.

The company that applied for these patents is Myriad Genetics. Building on the work of researchers around the world, Myriad identified the location and sequence of two genes that are sometimes mutated in breast cancer, known as BRCA1 and BRCA2 (collectively, BRCA1/2). Myriad filed patents for the genes in 1994 and 1995.

People can have their risk of breast or ovarian cancer assessed by finding out if they have mutations in BRCA1/2. Then, one can use this information to increase preventative care measures, like increased screening, or even having both breasts completely removed (a double mastectomy)--an elective surgery recently made famous by Angelina Jolie.

Myriad Genetics is the primary distributor of the BRCA1/2 test, which costs upwards of $3000. Because Myriad owned the patents on BRCA1/2, it was the only company that could administer the test for cancerous mutations.

The Supreme Court ruled that genes cannot be patented because "natural phenomena" are not patentable. That’s good news for doctors, researchers, and anyone who doesn’t like the idea of a company owning patent rights to pieces of your body. It also opens up BRCA1/2 testing to labs other than Myriad. But, the Court also ruled that cDNA, an edited man-made copy of the gene, can be patented. Ruling that cDNA can be patented will have important consequences for research, including research to discover new disease treatments and create new genetic tests.

Few people outside of biology research have heard of cDNA. In order to understand the critical distinction between DNA and cDNA, some background is necessary. Genes, which are made of DNA, contain the information required to make proteins. DNA is double-stranded, like a ladder. The familiar DNA nucleotides A, C, T, and G each have a complementary partner they always pair with: A always pairs with T, and C with G.

To make protein from DNA, several steps must happen (illustrated in the accompanying schematic). First, the DNA pulls apart into two separate strands and a copy is made. Instead of DNA, this copy is made of RNA. The copy, called pre-RNA, is not identical to template DNA. It’s a complementary copy. Next, that pre-RNA is edited so that only the parts that encode protein (the exons) remain. This exons-only version is called mRNA. The cell then uses the mRNA to assemble proteins.

For scientists, working with RNA is difficult; it is unstable and degrades quickly. So it is sometimes advantageous for researchers to extract mRNA and convert it back to stable DNA. The new DNA that’s created from the mRNA is called cDNA (see DNA to cDNA schematic). Just like pre-RNA is a complementary copy of the DNA template, the cDNA is a complementary copy of the mRNA template. It’s worth mentioning that cDNA can occur naturally; certain viruses can copy mRNA to cDNA (in fact, this is where scientists learned the technique).

 

@pesky_wabbit you are right any country that could elect Biden and Trump is capable of electing Rogan.

At least Rogan can speak clearly and is not suffering from Alzheimer’s.

Post removed