How does OTL amp get its power?


I am contemplating a stereo tube amp of relative low power(for me, anyway) and an Atmasphere 60 watter caught my eye. It will be used in the output#2 of my pre. I am currently using MC501's and a MC2300 pre to drive JM Lab Alto Utopias. I understand the transformer and the Autoformer, but how and why does an OTL amp get its power and what is an advantage to using one vs. non OTL?
Do they get hot? How easily do they clip? What is its "reserve" power? All comments are greatly appreciated.

Pepe
cajunpepe
Are you saying the step up transformers in Quads can be bypassed?
Actually, I meant that remark in the sense that there's nothing inherently "wrong" with the fact that tubes have relatively high impedance characteristics . . . it's just very different than the low impedances of dynamic loudspeakers.

For a high-impedance (i.e. electrostatic) loudspeaker, then there are indeed methods for directly coupling a tube amp to its electrodes, and a very efficient transfer of power is possible . . . Acoustat did this in the late-1970s, with very well-received, albiet unreliable results . . . I serviced a few of these many years ago, and can personally attest to both of these characteristics.

A direct-drive electrostat these days is still a pretty intimidating engineering project - the best common tubes suitable for the task (i.e. TV sweep tubes) are long out of production, and custom transformer(s) will probably still be required, for the high-voltage supply. And if you're talking about the ESL-63s, there's the bit about the multi-tapped delay line that would probably be a complicating factor.

If I wanted to build an active electrostatic speaker with a tube amp, I'd probably look more to using a conventional push-pull output stage with conventional, readily-available audio tubes, with a special low-ratio step-UP output transformer to match the electrostatic panel. But it'd still be a LOT of work to get it right.
THANKS TO ALL! I read the white papers on Ralph's website.
Ralph--thanks for the additional input.
Audiofeil--I will be contacting you.
I think that I will try the Atmasphere 60 on the Utopias.

Pepe
Hello,
While Athmaspere OTL amplifiers are superb, and no question about it! I still wish to have fairness to other OTL designers who do not participate in on-line forums. One of them is Jud Barber of Joule-Electra. Not many audio designers have so many truly prestifeound awards like Golden Year by Harry Pearson as Jud has.

His web site is not maintain very well so you have to do a google search. Below is review of of David Robinson, The Editor-In-Chief of Positive Feedback
-http://www.positive-feedback.com/Issue6/joule.htm

In no way I am saying that one designer's equipment is better then another. Its all up to the listener to judge.

Regards
To Atmaspere:
Hello Ralph, do you agree with five disadvantages of OTLs described by Kirkus above?
I always enjoy reading your technical explanations and your educational role on this forum deserve our deepest gratitude.
Thank you in advance.
Rafael
Rafael, no I do not agree with all his comments, although at at an earlier time some were true.

For example, the comment
1. The transconductance characteristics of vacuum tubes operated in an OTL push-pull fashion is both inherently non-conjugate and non-complimentary - essentially similar to a the "all-NPN" solid-state amplifier designs of the early-1970s.

applies to Futterman amplifiers only. The Circlotron output circuit (we were the first to use this in a practical real-world OTL) eliminates this problem in both tube and transistor circuits, allowing one to use non-complementary pairs (and for the record, complementary transistor pairs, such as NPN and PNP are never exact matches, so the argument is really a red herring).

I also have to clarify something about this statement:

2. The plate resistance of virtually all vacuum tubes is WAY too high for efficient power transfer to a typical loudspeaker load. Paralleling a bunch of output tubes is the usual solution, and power-efficiency of OTLs is still very poor, even worse with all of those filaments to run. Now when direct-coupling to electrostatics, it's a whole different story . . .

There *are* tubes that have low plate resistances. The 6AS7G is an example, as is the 6C33. So in an OTL, you will not find anyone using 6550s or EL34s! It is true that you still have to parallel tubes, but of any higher power amp that is a fact of life. Kirkus is correct about the filament issue, although the filaments often get blamed for excess heat, which they are *not* responsible for. That comes from the class of operation.

Comment #3 applies to Futtermans OTLs only. Circlotrons don't use a split-voltage supply, nor is there any need for an output coupling capacitor. Many people think that if its an OTL, it has to be set up like the old Futtermans, which do have these 'design features' but that is not true.

Comment #4... not IME; many customers of ours have commented on the fact that they can set the DC Offset of the amplifier and it will be exactly right 6 months later. The trick (and you would think this is obvious) is to be able to control the power tubes.

Comment #5 was never true- even the old Futterman amplifiers from the early 60s had slew rates far in excess of their transformer-coupled counterparts. We've measured slew rates of 600V/micro-second in the output section of our amps. This translates to extremely wide bandwidth. Our early prototypes exhibited this trait right away- they made very capable RF booster amplifiers at frequencies as high as 50MHz without oscillation. In our production amps we limit the bandwidth in the driver circuit to minimize RF issues, but the output section retains its speed.