First Order Crossovers: Pros and Cons


I wonder if some folks might share their expertise on the question of crossover design. I'm coming around to the view that this is perhaps the most significant element of speaker design yet I really know very little about it and don't really understand the basic principles. Several of the speakers I have heard in my quest for full range floorstanders are "first order" designs. I have really enjoyed their sound but do not know if this is attributable primarily to the crossover design or to a combination of other factors as well. In addition, I have heard that, for example, because of the use of this crossover configuration on the Vandersteen 5 one has to sit at least 10 feet away from the speakers in order for the drivers to properly mesh. Is this really true and if so why? Another brand also in contention is the Fried Studio 7 which also uses a first order design. Same issue? Could someone share in laymans terms the basic principles of crossover design and indicate the advantages and disadvantages of each. Also, what designers are making intelligent choices in trying to work around the problems associated with crossover design? Thanks for your input.
dodgealum

Showing 3 responses by josephaud

An even more telling part of the article regarding the group delay of a 8th order L-R crossover.
"Is It Audible?

The conservative answer says it is not audible to the overwhelming majority of audio professionals. Under laboratory conditions, some people hear a difference on non-musical tones (clicks and square waves).

The practical answer says it is not audible to anyone for real sound systems reproducing real audio signals."
That paper concludes:

"... the phase distortion audibility results in this thesis research did not seem to be as significant...
The human auditory system was found to be extremely tolerant of even gross phase distortion effects"

Compare that with the Rich/Cochenuer AES paper on The Audibility Of High Order Crossovers (115th AES)

"The second-order LR network received lower
audibility scores than the fourth-order network.
Statistically, all but one test subject could detect it
with noise or music and only two subjects were
unable to detect it with music. This result clearly
points away from the second-order network in the
design of loudspeakers."

(lower audibility scores in this context mean it was more noticable and bothersome to listeners when compared to an ideal source - higher is better)

"It is well established that driver interactions in first order networks create frequency response
disturbances with changes in driver path delays and,
for this reason first-order networks were not included
in our study. These networks also fail to provide
cutoff band attenuation to the extent that drivers may
be pushed towards nonlinear operation by signals
present well outside the crossover region."

"Other than their low cost, phase coherence is the sole reason given by designers for the use of first-order networks."

"Our test results could identify no sensitivity of the
test subjects to phase effects; these effects become
increasingly more apparent as the driver order
increases and our controlled study found the subject's
ability to identify the crossover followed an inverse trend."

"From the auditory experiments presented in this
paper, the authors suggest that speaker designs
should incorporate fourth-order notched crossovers,
with the eighth-order notched crossover made
available in high-performance cases."

(Infinite Slope falls under the fourth order notched with finite zeros category)
I was only quoting from the same source that was cited, since the earlier quote gave an impression that was different than the articles author intended.

Musical realism is the goal of every high end audio designer.

While visiting our local library last week, I heard some symphonic music and immediately thought "that sounds right!"
So I went to see what could sound like an orchestra in a library, and found....a live orchestra practicing in a library!

Each and every design approach has its advantages and its trade-offs. Getting a realistic sound from a system is a complex topic, and a sucessful design is the result of many decisions. The crossover slope is not the sole determining factor in the sound of the speakers. Examining the crossover slope in isolation is impossible outside the digital realm -
you are always introducing variables as the drivers interact and new radiation patterns are established.

I sympathize with the minority given voice on the forums. After all, I am the only manufacturer with Infinite Slope crossovers! I think its important to look at the acoustical wave interference and lobing patterns of the speaker - but since most other companies have no solution to these problems it is seldom talked about except on these forums.

Jeff