Why are we going 300 or more directions?


Funny, if you design a hi-speed coaxial cable, the fundamental design is the same. I do mean the same. Physics have honed the basic construct to the same physical design no matter who makes it.

Yes, conductor and shield materials will change some based on the frequency range, but not the design. If you change the basic design, you get worse performance, and not just differentiation (unless worse is your differentiation).

Then we have audio cables. True, audio exist in a frequency range where stuff does change with respect to frequency (impedance drops markedly as frequency is swept from 20 to 20 kHz) but this still doesn't allow willy-nilly designs from A to Z to hold the best electrical ideal.

If there are X number of speaker cable makers, only a small few can be the most ideally right according to physics for audio transmission. What we have is so much differentiation that it is almost humorous.

If "we", as in speaker cable designers, all got in a big room with the door locked and could not be let out till we balanced the design to best effect...what would that cable look like? Why?

Go to any web site and you can't get one-third of the way through before vendors allow misconception to be believed (references to velocity of propagation for instance) that are meaningless in their feint of hand or simply unprovable as to their effect...simply fear you don't have it. For instance, high velocity of propagation allows you to simply lower capacitance, the speed is there, but irrelevant at audio and cable lengths that you use. The signal travels too fast to matter. Signal delay is in the 16ns range in ten feet. Yes, that's 16 trillionths of a second. It's the capacitance folks, not the velocity that you engineer to. But velocity "sounds" exciting.

Audio cable over the years should be under CONSOLIDATION of principals and getting MORE like one another, not less so. I don't see a glimmer of this at all.

The laws of physics say there is a most correct way to move a electrical signal, like it or not. Electrical and magnetic fields have no marketing departments, they just want to move from A to B with as little energy lost as possible. You have to reach a best balance of variables. Yes, audio is a balance as it is in an electromagnetic transition region I mentioned earlier, but it STILL adheres to fundamental principals that can be weighed in importance and designed around.

A good cable does not need "trust me" engineering. An no, the same R, L and C in two cables don't make them the same. We all know it isn't that simple. BUT, the attributes (skin effect and phase responses) that DO make those same R, L and C cables different aren't magic, either.

I've listened to MANY cables this past six months, and it no longer amazes me which ones sound the best. I look at the several tenets that shape the sound and the designs that do this the most faithfully always come out on top.

DESIGN is first. Management of R, L, C, Skin effect and phase. Anyone cam stuff expensive material in a cable, few can DESIGN the right electrical relationships inside the cable. Why be stuck with excessive capacitance (over 50 pF/foot) to get low inductance (less than 0.100 uH/foot) when it's NOT required, for instance. A good design can give you BOTH!

MATERIALS are a distant second to sound quality. They contribute maybe 2 tenths of the total sonic equation in a quality design and ZERO in a bad design. A good design with standard tough pitch copper will exceed a bad design with single crystal cryogenic OFC silver-plated copper. You can't fake good cable design and the physics say so. Anyone can buy materials, so few can do design.

Being different to be different isn't a positive attribute in audio cables. Except for all but ONE ideal design it’s just a mistake.

I've listened to the same cables with dynamic speakers and electrostatic speakers, and the SAME cables always come through with the same characteristics. Good stays good. True, the magnitude of character is different, but the order hasn't moved.

I'm not real proud of the cable industry in general. True transmission accomplishments should reach common ground on explainable principals and that SHOULD drive DESIGN to a better ideal. But, we people do have emotions and marketing.

What do I look for in a speaker cable?

1.0 Low capacitance. Less than 50 Pf / foot to avoid amplifier issues and phase response from first order filter effects where the phase is changing well before the high-end is attenuated. The voltage rise time issue isn't the main reason low capacitance is nice, it's that low capacitance removes the phase shift to inaudible frequencies and doesn't kill amplifiers.

2.0 Low inductance as we are moving lots of CURRENT to speakers. Less than 0.1UH /foot is what you want to see. Good designs can do low cap and low inductance, both.

3.0 Low resistance to avoid the speaker cables influencing the speakers response. The cable becomes part of the crossover network if the resistance is too high. For ten-foot runs, look for 14 AWG to maybe 10 AWG. Bigger isn't better as it makes skin depth management issue too hard to well, manage.

4.0 Audio has a skin depth of 18-mils. This is where the current in the wire center is 37% of that on the surface. The current gradients can be vastly improved with smaller wire (current closer to the same everywhere). How small? My general rule is about a 24 AWG wire as this drop the current gradient differential across the audio spectrum to a value much less than 37%. Yes, that's several wires. Don't go overboard, though. Too much wire is a capacitance nightmare. Get the resistance job done then STOP at that wire count.

5.0 Conductor management. Yes, point four above says more than one wire, many more! And, if you use 24 AWG wire for skin depth management, it can be SOLID to avoid long term oxidation issues. I've taken apart some old wires and it can look pretty bad inside! Each wire needs it's own insulation.

6.0 Symmetrical design. Both legs are identical in physical designs allows much easier management of electricals.

7.0 Proper B and E field management is indirectly taken care of by inductance and capacitance values. The physics say you did it, or you didn't. BUT, you can design in passive RF cancellation if you use a good design, too. Low inductance says that emissions will be low, however, as less of the energy is generating an electric and magnetic field around the wire, thus limiting EMI / RFI emissions.

8.0 Copper quality is finally on the list. It doesn't matter without one to seven! The smaller the wires (infinitely small), the LESS the silver plate will warp the sonics. If the current density is the SAME at all frequencies, then all frequencies see the same benefit. If a wire is infinitely big than the high frequencies will see the majority of the benefit. 20 Hz and 20kHz are at the same current density on the wire surface. But, the gradient difference is too small to matter with 24 AWG wires. If you want silver, let the silver benefit everywhere!

9.0 Dielectrics. Dead last. Why? Because capacitance is driven by your dielectric. If you have the low cap, you have the right dielectric for the design. You HEAR the capacitance and NOT the dielectric per say. True, Teflon allows a lower capacitance for the same distance between wires, thus making lower capacitance. But, if you FOAM HDPE from 2.25 down to 2.1 dielectric constant, it can meet the same cap at the same wall and sound just as good. Careful though, it is now more fragile! It's a trade-off in durability, not sound quality. Teflon isn’t magic. It is expensive.

10.0 This is not last per say as it is CHOICE in design. I do not like fragile cables laying on the floor to be stepped on. Some do. A good cable design should be durable enough to take that late night trip to the TV set with the light low, and then step on your cable by accident. The cable should be user friendly.

Everything above can be calculated by known physics equations with the exception of copper quality on sound. I'll have to hear this on two IDENTICAL cables except wire quality. But, why would a vendor allow you to do that when they can scare you into a more expensive copper? I'll be glad to pony-up if I'm allowed to make the judgement for myself. Or, let be buy it at a reasonable price!
rower30

Showing 11 responses by geoffkait

Oops, somebody forgot wire directionality. I forget in which electronics textbook that is discussed. :-)
The debate about R, C, L and even metal purity, conductor diameter, dielectric material, all the usual suspects, gets a little moot when you consider how superior cables are after they have been broken in, especially if they have been broken in on an AudioDharma Cable Cooker or similar device AND after they have been cryogenically treated. Then you have to ask yourself, does a treated mid price cable sound better than an untreated high priced cable? Lance Armstrong would not have been competitive unless he had used performance enhancing drugs (since everyone else was using them).
Rower30 wrote,

"No, didn't forget directionality it at all, it doesn't matter."

Are we supposed to throw out all the reports that fuses are directional, that interconnects are directional? Do you honestly think cable companies are preying on gullible audiophiles by marking directional arrows on their cables and fuses? Shall we report all the aftermarket fuse companies - Synergistic Research, HIFI Tuning, Audio Magic, Isoclean, etc. - to the Better Business Bureau? Hell, even cheap stock fuses in speakers and amps are directional - it's not a high end audio phenomenon - it's a physics phenomenon. The high end has known about wire directionality for at least 10 years ; isn't it about time for everyone else to catch up? Are their really ANY high end cable companies who do NOT acknowledge wire and cables are directional? Maybe if we ignore wire directionality it'll just go away.

"When you control the mail you control information." - Newman

"It's what I choose to believe." - Dr. Elizabeth Shaw in Prometheus
Rower30 wrote,

""...The high end has known about wire directionality for at least 10 years; isn't it about time for everyone else to catch up? ..."

"In my opinion, no it isn't. There isn't any proof to catch-up to. Is the "audio" community the only place where sinusoidal information is transmitted? Why has no other scientific discipline, with far more fragile signals than audio noticed this phenomenon (well, it would be a phenomena if there was any true evidence it existed) and hasn't taken advantage of it?"

Like a lot of things in this hobby there might be no proof. But if you're looking for evidence you need look no further than the testimonies of customers of aftermarket fuses who have experimented with the direction of fuses and have reported their results. It's because directionality is now part of any intelligent design that so many high end cable and fuse manufacturers control the fabrication of the wire in order that the directional ARROWS that appear on their products show the correct orientation. It wasn't that long ago that the owner of HIFI tuning (were his the first aftermarket fuses? I think they probably were) maintained that his fuses were NOT directional, even in the face of his customers' findings to the contrary, and that no matter which way his fuses were inserted they would eventually "settle in" and work themselves out. In the meantime, the owner of HIFI Tuning has recanted and his fuses now come with little arrows to point the way.
Mapman wrote,

"For the records, my MIT ICs are supposedly directional in that the network boxes are at one end and there are arrows indicating proper orientation. SO that is the way I hook them up. It even makes sense to me that these are "directional" in that the two ends are CLEARLY not the same. I have had them hooked up both ways. Was there a difference? Maybe, but I could not identify."

Mapman, have you given any consideration to visiting an audiologist?
Trelja, you should have gotten the Audioquest Truth cables (ICs and digital cable, air dielectric). Absolutely fantastic in every way!

Cheers
Rower30 wrote,

"This group should use each member’s input to help move the topics forward, not throw arrows or use indefensible arguments that can’t be analyzed when this thread is about just that. Believing is fine, but this is for the other half."

Ok, fair enough, but I'm getting a bad feeling this discussion is being limited to those who have trouble trusting their ears and rely on textbooks and Über Measurement Specialists to tell them what they should listen to. I was under the distinct impression advanced audiophiles had jettisoned such old fashioned notions back in the '80s. "Believing is fine." Yeah, right, as if audiophiles are religious heretics. As they say on The Shark Tank, I'm out.

"It's what I choose to believe." Dr. Elizabeth Shaw in the movie, Prometheus
Jneutron, oops, did not mean to blow off your question, I have been assembling a new headphone system. For insurance I had the ICs and power cords broken in on the latest AudioDharma Cable Cooker and also sent them off to the cryo lab, figuring better safe than sorry. :-). I'm using small 1" tempered steel springs and heavy masses for isolation of modded Oppo 103 and hybrid tube headphone amp.
Jneutron, as you probably already know, cryo is used for many metal items like high performance pistons, engine blocks, golf clubs, razor blades, all manner of tools, etc. I used to cryo my brass rods for my sub-Hertz iso platform as well as all the metal fittings, figuring better safe than sorry. One of my fav isolation techniques are what LIGO uses in the search for gravity waves, which (at one time) included single crystal sapphire thread suspensions for optical elements, Multi-stage monsters than employ heavy masses on springs, not to mention active components.

Yes, I know what you mean about angst on the job, we used to call it the night of the long knives when the rumors about cuts started circulating. Lol
Jneutron wrote,

"GK, I prefer discussing scientific entities. Your statements are not scientifically supported by any test. If you wish to claim burn in of wires, please provide scientific evidence of such claims."

Sorry, this is not some government lab, it's a forum for the exchange of ideas and experiences, including listening experiences. And my experience is that burn-in of cable is critical to how they sound and that trying to evaluate the sound of any cables without proper burn-in is just plain silly. I wish not to discuss scientific entities, I wish to discuss sound.

"If you wish to claim cryogenic alteration of either dielectric or conductors, please provide scientific evidence of such claims."

I couldn't care less about scientific evidence. Besides, I made no such claim, but apparently you are! Mox nix to me, the only thing I'm interested in is how it sounds. I trust my ears, one thing you apparently don't.

"Anecdotal accounts are of no significance as scientific proof. They are useful as a self serving vehicle, but not as proof."

I never claimed they were scientific proof. This is a hobby. Get over it. There is no scientific proof for many things in this hobby. It sounds like you think we should wait until NASA or AES or some government lab comes out with proof of cryogenics and burn-in of cables in terms of how they affect their sound. I kinds doubt that will ever happen. So are we supposed to sit on our hands?

"People would be much better off if they believed in too much rather than too little." PT Barnum

Yes, it's been a little while, are you are still at the government lab?

Geoff
Jneutron wrote,

"Geoff, You mentioned tempered springs. Do you get involved in the tempering at all? I ask because antique clock mainsprings tend to lose their strength over time, and I suspect that I may be able to re-temper them after opening them up again, perhaps oil or maybe water quench. I was wondering if you've had any experience in that."

I have about 15 years of experience with cryo labs and used to cryo my springs six or seven years ago when I used larger springs, that were already hot oil tempered; these days my springs come heat tempered. The high carbon steel springs I use now don't loose their strength or stiffness over time. I have cryo'd all sorts of things over the years, most recently my interconnects and power cords plus CDs.

"And, you did indeed blow off the question again. I wasn't asking about your work....I was asking about you."

I have been doing pretty well, you know, considering the recession and everything. My last real job was in the FAA office of safety doing risk analysis for some big technical programs. Ocassionally i think maybe I'll go back to work but so far I have managed to avoid it.

Geoff