Dedicated line which wire?


Is THHN 10 AWG crap?(the price is great) LAT AC2 is about $700. for 50', JPS ac line is about $900. Anyone know if the sub $50 THHN is a sonic compromise? (would rather spend the extra $650-$850 on recordings or concerts) I've heard that questionable copper purity and the pvc insulation make THHN a poor choice for audio ac .Any other ac line recommendations out there? Anyone know if solid really sounds better than stranded?
duanegoosen
1) #10 is heavier than #12, so he would therefore be lowering the series resistance and voltage drop. This would NOT create a bottleneck in the system as you suggest. Wire gauges work BACKWARDS from what most people think i.e. 8 gauge is thicker / lower resistance than 12 gauge. The number may be lower, but the wire is bigger.

2) Your posting your opinion as fact. Although this is not uncommon. I probably do it myself every day and will probably end up doing it here. None the less, the other side of the coin needs to be represented. As usual, if someone disagrees with what i have to say, PLEASE post your comments. I am not above learning or making mistakes.

3) Your comments about using heavier wire than #12 being useless is incorrect. If you are putting any type of heavy load on a cable i.e. running it near its' rated current load, a heavier gauge will ALWAYS have lower voltage drop and thermal losses. The ratings on wire are a compromise at best. While they do take in such things as conductivity, thermal loss, current capacity, total length, they trade off what is "acceptable" as an industry standard for what is "optimal" from an end users point of view.

Try passing a continuous 30 amp load through some 10 gauge wire at length of 25' foot or longer and take measurements at the far end. As you would probably guess, 25' is actually a short run when you consider how house wiring is indirectly routed through conduit, etc... Then make those same measurements using 8 gauge. You will still see voltage sag using 8 gauge. Not until you're using 6 gauge will the voltage drop be to a point that is minimal.

Keep in mind that most of the devices that i work with that are pulling this type of current are RF amplifiers i.e. just like audio amps but at a higher frequency. They output wattage and low distortion is a requirement. Bottom line is that the results of voltage sag are VERY measurable in terms of maximum clean output and stability when running at or near capacity. I know this, as i get to see it all the time when testing various components on the bench.

Due to the fact that i work with electrical components that can sometimes pull HUNDREDS of amps, i've had to learn ( the hard way ) that you can never have TOO HEAVY of a wire on a high current device. That is, so long as the Device Under Test ( DUT ) is well built and actually designed to run at / near rated output for extended periods of time. Otherwise, voltage sag can act as a slight buffer, keeping the device from running on the ragged edge and blowing up. Then again, if someone is worried about optimizing the power supply feeding all of the components, i doubt that they've invested in equipment that is sub-standard or not capable of meeting spec.

4) As to your comments about using heavier gauge wire in a power cord not accomplishing anything, i disagree. Lowering series resistance i.e. "voltage drop" over any length of cable or through a connection is always beneficial. Of course, we are all shooting for optimum performance, so any deviation from "optimum" is considered a bad thing.

Whether or not someone wants to pay for "optimum" performance or the conditions necessary to achieve that may be another story. The fact that most of the benefits of "better wire" ( in any situation ) come from using logic, reasonably priced wiring and knowing how to geometrically configure it for best performance in that specific situation. There are commercially available pre-manufactured power cables that offer RFI / EMI geometries that are extremely reasonable in terms of price per foot. Surfing through the Belden website can produce some very cost effective alternatives and provide a wealth of knowledge at the same time. Knowing some basic electricity / electronics while doing this doesn't hurt either : )

5)If you're looking for the most bang for the buck, use the heaviest gauge solid core twisted pair wire that you can find. I know that several different wire / cable distributors normally stock this type of item in at least 12 gauge. You may be able to find 10 gauge, i don't know. You then run a seperate solid wire of AT LEAST equal or ( preferrably ) heavier gauge for the ground. This gives you the following benefits:

Higher capacitance per foot, resulting in greater filtration of unwanted frequencies.

Lower inductance to minimize the cables from acting like a long wire antenna.

The shortest / most direct / lowest resistance path to ground.

6) Some wire distributors will actually produce reasonable quantities of cable for you. One local distributor has their own twisting / braiding machine. You can tell them that you want to twist two or three solid gauge number 10 cables of your brand / make choice and they can do it. They will charge you for the extra labor, but it is FAR cheaper than buying some "audiophile grade" power wiring. Obviously, some places will have a minimum run in terms of footage, but you can sometimes make a deal in terms of paying slightly higher labor costs to do a short run. By studying various mass produced commercial cable designs and their benefits, you can duplicate their performance for pennies on the dollar using this method of manufacture. Sean
>
just for my input. i think most of us who have opinions are good people. sometimes we make mistakes.. oops.. but i don't think spanking the individual publicly goes too far
Sean, thanks for the mini lesson in power cabling. I just bought a new house and plan to have a electrician install dedicated lines. I just surfed the belden site and it's all greek to me. Can you tell me exaxtly what to instruct the electrician to do? Here's what I know. Dedicated ground, 20 amp, star wired, not series. What wire (exactly) should I buy? I also plan to use better ac plugs like PS audio or the FIM. I've heard about whole house surge protection at the panel-what do I need to tell him here? Also, is there different quality in circut breakers too? If so, what's the type/brand to get? Anything else? Thanks in advance...John
I'd like to start by saying I generally agree with what Sean is saying above. I would also like to mention that my profession is Commercial Electrician in Silicon Valley Ca. I have around twenty years experience and have installed many dedicated circuits for all sorts of sensitive equipment.

I'd like to start with a practical look at voltage drop. Why don't we plug in some real numbers that might be used for a stereo or H/T system installation. . What if we say the load is a continuos 15 amps the distance is 150 linear feet from the source (panel) copper wire is being used (k=12.9) Here's how that looks for an electrician trying to size the wire;

VD= 2 x k(resistance x circular mils/1000') x distance x load /(divided by) circular mils

VD= 2 x 12.9 x 150' x 15amps /6530(#12wire) = 8.88 or(7.4%@120volts)
VD= 2 x 12.9 x 150' x 15amps /10380(#10wire)= 5.59 or(4.6%@120volts)
VD= 2 x 12.9 x 150' x 15amps /16510(#8wire) = 3.51 or(2.9%@120volts)
VD= 2 x 12.9 x 150' x 15amps /26240(#6wire) = 2.21 or(1.8%@120volts)

I'd like to note that the allowable voltage drop from the panel to the load is 8% (NEC) So in fact a #12 wire could be used legally in this scenario.

One point I would like to make is the diminishing returns on money invested verses "bang for the buck" Running beldon wire from your panel to your load seems a little extreme to me. (If you do go this route plan on running conduit to protect the wire).
I personally would put the money into isolated grounding or dedicated neutrals.

If you buy wire and twist it together you will need to run conduit to provide protection for that wire. This may be worth the extra expense, as there appears to be some sonic benefits.

MC CABLE has the wire already twisted inside but the ground is twisted in with the hot and neutral. I'm not sure if this would hinder optimum performance? (Comments welcome)

Bumping up the wire size is a good idea. However most electricians are going to think your nuts (Myself included) if you ask them to terminate a #6 wire on a 20 amp receptacle. Especially one that is less than 200' from the panel. #8 would be the most my imagination will allow for a twenty-amp circuit.

THHN is an industry standard and personally it's all I ever use. If you go with romex I think they are making it with THHN insulation around the conductors these days though it use to be TW.

I am of the opinion that it would be better to run two or three dedicated circuits with #10 wire than one with #8 or #6 when you drop the size of the load on the circuit you will reduce the voltage drop. That is to say a 5amp load will have less VD on a #10 wire than a 15-amp load.

As far as breaker selection always match the breaker to the panel manufacturer. I personally like to use the full size breakers when ever possible.

My intention here is not to bash anyone’s comments but instead to lay down some practical wiring methods and common sense approaches. I couldn't agree with Sean more when he said "Weather anyone would want to pay for optimum performance is another story" There is a lot better ways to spend your money in this hobby so lets not be to over zealous on the dedicated circuits.

I hope this helps:~)