Azimuth observations and importance


After adjusting azimuth with a Fozgometer loaned to me, the following is what I observed. Individually, these changes were subtle although noticeable. The combined effect however, was significant to the overall presentation.

Imaging improved.

Vocals became more focused, not as big and wide as before.

Instruments more detailed with greater air. Location is more precise.

Tighter bass versus the slightly lingering bass notes previously.

Better top to bottom detail and clarity.

I never realized how important correct azimuth adjustment is and this exercise was quite a learning experience for me. Thinking I was correctly adjusting azimuth by visually setting the headshell as level as possible was a reasonable but flawed attempt.

I have found at least two stylus issues that if present will affect azimuth and sound.

1) A straight cantilever that is twisted left or right changes the attitude of the diamond and its relationship to the groove. By twisted I mean the cantilever has rotated on its own axis. This one is very difficult to see without appropriate magnification.

2) A cantilever that is canted to the left or right a degree or more but is still straight, not bent. It points left or right probably because it was not centered correctly when the cantilever was installed. It also changes the attitude of the diamond.

What is probably basic and common knowledge to everyone here is something I have just been enlightened about after giving it very little thought. I am now convinced that accurate azimuth is a required step in the turntable set up process and I will be giving full attention to this part of the equation.

No more guesswork and eyeballing which I am embarrassed to say was the norm. Doug
128x128dougolsen
I was wondering if anyone could give a succinct (if possible) tutorial on how to use an analog multimeter to adjust azimuth for someone with no engineering background (in other words, azimuth for dummies as it were). In the alternative, perhaps someone could point me to such a resource. I have Fremer's tt set-up DVD but it's useless in this regard. It would be greatly appreciated.
I think this is what it boils down to. Please anyone correct me if I am off base:
(1) You need a test LP that has a band where signal of a known frequency is recorded for one channel only. Lets say it's the R channel. Play the band and measure V in the R channel. Now play that same band and measure V in the L channel. That V represents crosstalk of R channel information into the L channel. The difference in V can be converted to db. Formulae are on the internet.
(2) Do the exact same thing, only this time play another band on your test LP that drives only the L channel at the same frequency,. Measure V in the L channel and V in the R channel and again calculate the difference in db.
(3) Adjust azimuth so that you get the largest possible absolute values of db for both sides. It's always a compromise.
Thank you Lewn. This certainly gives me a better idea. I am also confused with how and where to insert the leads in the system and DC vs AC voltage on the multimeter. Do I insert them in the amp's speaker terminals or in the speakers' terminals? Do I remove the speaker wire completely when doing this? Any risk damaging anything while messing with the leads? Moreover, I recall Fremer talking about low voltage and high voltage for each channel. I am a fast learner but need to master the basics first...

Thank you!
I have Fremer's tt set-up DVD but it's useless in this regard. It would be greatly appreciated.

I have not seen MF's video but I believe it comes with a .pdf file that describes the same technique you can read here. Recommended reading it is. At the end of the .pdf are forms from Wally Malewicz for recording your azimuth measurements in a logical way and converting them from volts to dB volts. You might want to print out those forms to use while making adjustments.

As noted earlier, set the volt meter for AC and 5 volts (or less). Measure from the amp's terminals. Remove the speaker wire from the amp when taking measurements with the voltmeter. (You can measure from the speaker terminals, but that means you get to listen to the 1kHz test tone while doing so - I'd rather set azimuth, then listen to music to refine azimuth.) Don't short across the amp's terminals; that is, keep the voltmeter probes separated without metal touching both terminals at the same time.

The needle or digital readout on the voltmeter can jump around a bit, so you'll want to gauge an average - the devices you can purchase such as the Wally azimuth box, and possibly the Fazgometer (?) include a high and low-pass filters to help eliminate this.

Once you get used to playing the tone for each channel, reading the voltmeter and recording your measurements, you'll find it makes sense. Take your time making the azimuth adjustment in v. small increments, followed by a set of measurements to see the result of the adjustment. It may take a couple attempts to gauge that you're adjusting the stylus so as to diminish crosstalk. Once you get to a sweet spot you should hear what the guys are saying to listen for when adjusting by ear. Then you can tweak by listening. Going forward, your ears will know what proper azimuth setup sounds like. Some cartridges are more rewarding of the effort than others. On my Transfiguration cartridge careful attention to azimuth reduced smearing and made a significant improvement in focus. Take it slow and have fun dialing in your rig!
 
Ideally, you would measure the voltage output where the cartridge attaches to the phono stage. This is really unlikely to work well for the unamplified signal direct from a LOMC cartridge, so the next best thing would be to measure the voltage at the output of the phono stage. I personally would not do it at the output of the amplifier, as someone else suggested further up the thread, because there are so many other variables in the chain that could lead to an inaccurate idea of what the cartridge is actually doing. If you have a discrete phono stage, put the red lead into the hole for the center pin of the RCA plug and your black lead on ground (the outer barrel of the female RCA plug or the chassis, at the output of the phono stage). If you have a built-in phono stage in your linestage, then you might have to take off the casing and find the leads that go from the phono section to the linestage section.