Krell Class A/B power amps, do 'anticipator circuits' work?


My thread 2

In my hi-low speaker sensitivity thread, 8th-note mentions his Krell 300S power amps.
He shares my passion in this department.  I have run Krell Reference KRS200s, upgraded to 400wpc since 1990.
Like all Krells from the first decade of production these are 'pure class  A' all the way up.  The 300S runs class A/B

At this point, the Stereophile review of the 300S by Thomas J. Norton is very instructive and as a subscriber for many decades I acknowledge this source:
          https://www.stereophile.com/audaciousaudio/krell_ksa-300s_power_amplifier/index.html

[Isn't the Rikki Lee Jones hard to find 'Girl at Her Volcano' 10 inch just wonderful?  And the huge drum shots just the stuff we speak of below.]

By the early 1990s Krell felt under pressure from the climate change lobby to reduce the huge power consumption of full Class A operation.  The KRS200s draw more than 1kW per side.  So they abandoned it and moved to Class A/B which applies a sliding bias according to the exigencies of the music signal.

But Krell still highly valued the benefit of instantaneous power availability to cope with peaks in the musical output.  So they created 'anticipator circuits' that they said continually analyse the input signal and instantaneously increase the bias to one of four successively higher levels to accommodate peaks.

I never believed this is possible as the reaction cannot be fast enough to increase the bias before the moment is past.
How can it be implemented the moment the skin of that big bass drum is deflected by the first fraction of a millimeter.  Mr Norton covers the same issue in his review.  It seemed to me the only way to do it is to buffer the signal for at least as long as the amplifier takes to react to the input (this would of course have the massive downside of subjecting LPs to the clock and dither problems of digital).  Or perhaps beforehand to create a log of the programme that would be fed to the amplifier and applied to adjust the biasing in advance.

My KRS200s were in for full refurb in the early 2000s.  Since I was considering changing to newer Krells, I took the opportunity to make these points to the engineer doing the work.  He was not able to explain to me how it is possible but said there is no buffering.

So I have always considered the 'anticipator circuits' to be a pig in a poke or, to put it more politely, advertising flannel.

I note that in nearly 30 years no other amplifier manufacturer has sought to make such a claim.

So I retain my KRS200s as keepers; relics of a past age now gone forever in a dull world of digital amps and Class D.

I find them to be superbly dynamic and generally of extremely high SQ, if perhaps rather warm during the summer as a/c would interfere with the music.

My questions are:
Without buffering how can it be done?  Was/is Krell speaking truth?
Would buffering create the clock and dither problems I anticipate?
Has any designer tried buffering and what was the outcome?

I do rather like the concept of applying advance programme logging.  It would be a bit burdensome but, subject to the step changes of bias not being discernable, allows almost the full benefits of continuous Class A operation while keeping the Greens at bay.






128x128clearthinker
Thanks for the response.
Yes a2d, at the outset Krell said that once raised the higher bias will be held 15 to 20 seconds before it is dropped back if there is no further hi-level signal.
But that doesn't answer how the first rise is triggered in time and what happens if there is a sudden new peak after 25 seconds.
One might postulate a single heavy stroke on a large bass drum every 25 seconds.
And Krell informed me there is no buffer=delay circuit.
The bias cannot be adjusted from the signal alone. Any circuit that slides the bias has to take into account the load presented by the speaker, for that is the only thing that draws current through the output devices. The buffer would, in theory, apply to only one type of speaker impedance vs frequency because it is a known that can be the reference of the buffering scheme. If the buffer is set to maintain the bias voltage to equal the voltage across the emitter resistors at, say, a 6 ohm load @ 1khz and the amplifier is hooked up to a speaker that presents 2.5 ohms at that frequency, what does the amplifier do? What about the other frequencies? In other words, the buffer can never tell what the load presented to the amplifier is going to be and the amplifier will do what it would have done without the buffer at low impedance -- switch to class a/b or b.

The problem with class A amplifiers is that the bias voltage has to be set so the quiescent current does not overheat the devices. However, when the load impedance drops, the higher output current causes a higher voltage drop across the emitter resistors. If this voltage drop exceeds the bias voltage, one of the complementary pair transistor (current sink) shuts off and the amp goes class B and shoots out a lot of distortion from the hard shut down. In order to keep class A at the lower impedance, the bias voltage has to be increased above the emitter voltage at that impedance. Now there is a higher quiescent current and more heat sinking is required, not to mention the increase in power supply filtering in order to keep the input/driver stages from being affected. So the trick to sliding bias is to not anticipate the load current but to compare it to a reference, a reference that allows for a manageable Q current.

I don’t know what Krell uses, but sliding bias can easily be done by monitoring the voltage across the emitter resistor by setting up a reference voltage with diodes in conjunction with resistors. The output across the resistor is compared with the reference voltage and if there is a high current draw, the resulting voltage drop is sensed by the diodes which then open a transistor whose collector steals current from the output transistor base, removing some of the quiescent current gradually, allowing the conducting transistors to operate in class a instead of being reversed biased, shutting down and operating in class B.
You will note I said "waveform", not specifying which one. You are assuming emitter degeneration resistors, but it would be just as easy to pull the value from a high side or low side current sense on the power supply output.  I could see a hybrid that also takes into account output voltage since distortion is around the crossover point.
It is possible to linearize, with the feedback, any amount of output non-linearities.  The difference between class A and AB is in the amount of feedback (tenfold).  Increasing bias without lowering negative feedback won't achieve anything.



We used to build quite a lot of very high biased push pull Class-A’s 100w> with around 150w in B

My old boss (rip) Steven Deratz of Deratz Electronics back in the 80-90’s in Brookvale Sydney, was the first to have a patent on a "Sliding Bias" type circuit, just to save on the amount of heatsinking were had to use with the normal Class-A we built. My personal A amp was a beast 3 man lift self contained water cooled transistor jacket, pump, radiator/fan.

Anyway his patent sliding class-A worked fine, but the problem was the initial leading edge of a larger transient was in B after which all else stayed in A until the bias rolled itself back, or if there was a second leading edge transient larger than the first, it too was B.

We could never make it sound as good and just high biased Class-A, it just wasn’t fast enough to keep up with music’s varying transients. And if you held the A up for a longer period, you had the same heat problem as normal high biasing.

He let the patent lapse and then Technics bought out something called Quarter-A and AA, and then Krell with "Plateau Bias"

Moto? Nothing beats the real thing.

Cheers George