Speaker Spike Philosophy


This is a learning exercise for me.

I am a mechanics practitioner by training and by occupation, so I understand Newton’s Laws and structural mechanics and have a fairly effective BS-detector.

THE FOLLOWING THINGS PUZZLE ME, and I would be glad to hear from those who believe they understand so long as the responses are based on your actual experience or on sound mechanical arguments (or are labeled as conjecture). These are independent questions/musings, so feel free to weigh in on whichever ones you want, but please list the number(s) to which you are responding:

  1. Everything I have read recently ("Ask Richard" (Vandersteen) from 15 Feb, 2020, for instance) seems to indicate that the reason for speaker spikes is to hold the speaker fixed against movement induced by the drivers. I have seen in the past other explanations, most employing some use of the term "isolation" implying that they decouple the speaker (from what?) Evidently the "what?" is a floor that is fixed and not moving (let’s assume concrete slab foundation). So to decouple the speaker from the floor, which is fixed, is to . . . allow it to move (or not) as it wishes, (presumably in response to its drivers). These two objectives, "fixity" and "isolation" appear to me to be diametrically opposed to one another. Is the supposed function of spikes to couple the speaker to "fixed ground" so they don’t move, or is it to provide mechanical isolation so that they can move (which I do not think spikes actually do)? Or, is it to somehow provide some sort of "acoustic isolation" having to do with having some free space under the speaker? Regarding the mechanical isolation idea, I saw a treatment of this here: https://ledgernote.com/blog/q-and-a/speaker-spikes/ that seemed plausible until I got to the sentence, "The tip of a sphere or cone is so tiny that no vibration with a long waveform and high amplitude can pass through it." If you have a spike that is dug into a floor, I believe it will be capable of passing exactly this type of waveform. I also was skeptical of the author’s distinction between *speaker stand* spikes (meant to couple) and *speaker* spikes (meant to isolate/decouple, flying in the face of Richard Vandersteen’s explanation). Perhaps I am missing something, but my BS-detector was starting to resonate.
  2. Spikes on the bottoms of stands that support bookshelf speakers. The spikes may keep the the base of the stand quite still, but the primary mode of motion of such speakers in the plane of driver motion will be to rock forward and backward, pivoting about the base of the stand, and the spikes will do nothing about this that is not already done by the stand base without spikes. I have a hard time seeing these spikes as providing any value other than, if used on carpet, to get down to the floor beneath and add real stability to an otherwise unstable arrangement. (This is not a sound quality issue, but a serviceability and safety issue, especially if little ones are about.)
  3. I have a hard time believing that massive floor standers made of thick MDF/HDF/etc. and heavy magnets can be pushed around a meaningful amount by any speaker driver, spikes or no. (Only Rigid-body modes are in view here--I am not talking about cabinet flexing modes, which spikes will do nothing about) "It’s a simple question of weight (mass) ratios." (a la Holy Grail) "An 8-ounce speaker cone cannot push around a 100/200-lb speaker" (by a meaningful amount, and yes, I know that the air pressure loading on the cone comes into play as well; I stand by my skepticism). And I am skeptical that the amount of pushing around that does occur will be affected meaningfully by spikes or lack thereof. Furthermore, for tower speakers, there are overturning modes of motion (rocking) created by the driver forces that are not at all affected by the presence of spikes (similar to Item 1 above).
  4. Let’s assume I am wrong (happens all the time), and the speaker does need to be held in place. The use of feet that protect hardwood floors from spikes (Linn Skeets, etc.) seems counterproductive toward this end. If the point of spikes is to anchor the speaker laterally (they certainly do not do so vertically), then putting something under the spikes that keep the spikes from digging in (i.e., doing their supposed job) appears to defeat the whole value proposition of spikes in the first place. I have been told how much easier it is to position speakers on hardwood floors with the Skeets in place, because the speakers can be moved much more easily. I was thinking to myself, "yes, this is self-evident, and you have just taken away any benefit of the spikes unless you remove the Skeets once the speakers are located."
  5. I am making new, thick, hard-rock maple bases for my AV 5140s (lovely speakers in every sense), and I will probably bolt them to the bottom of the speakers using the female threaded inserts already provided on the bottoms of the speakers, and I will probably put threaded inserts into the bottom of my bases so they can be used with the Linn-provided spikes, and I have already ordered Skeets (they were a not even a blip on the radar compared to the Akurate Exaktbox-i and Akurate Hub that were part of the same order), and I will end up doing whatever sounds best to me. Still, I am curious about the mechanics of it all...Interested to hear informed, reasoned, and reasonable responses.
linnvolk
@mitch2 , I know you are not the salad guy.

Whether the model applies or not, using Coulomb friction in any literature directed at audiophiles, to me, is not above board, as most would have no idea that means nothing to do with electricity (in general).  I think we are in sync on our impressions of marketing. Whether it applies to the matter at hand, it is just one of many forces that would be in play.
Anyone who has taken physics (which includes anyone with an engineering degree) should know what Coulomb friction is.  It may be more widely understood than not.  But we digress...
Post removed 
I hate to disagree @linnvolk, but I have an engineering degree, took physics (even thought it was in Computer Science and Engineering) and knew about Coulomb's law (I vaguely remember it) and of course friction, but not "Coulomb Friction".

In any case, as in one of the earlier posts as recommended by one of the poster's dealers, let your ears do the deciding. Rega uses spikes (very big ones) on its $40K Naiad table and SME tables are very highly regarded and use some type of podium/springs.

I use springs under a platform under my turntable, and spikes (with discs so I don't tear up the hard wood floor) on my speakers....really by default since they came with the speakers and are recommended by the manufacturer. I would be interested in hearing if a spring platform would improve the speaker sound, but then you have to decide if you take out the legs and the spikes and the discs, just the discs, just the spikes and discs....a lot of experimentation. I am sure the distance off the floor makes a difference also.

The fact that the spring platform for speakers from Townshend costs more than my speakers makes it a non-starter. I personally think springs are better suited to turntables than really heavy items because of the sensitivity of the cartridge picking up the signal from the groove. A completely solid floor standing speaker that is well designed should not need springs. There must be a reason why NO speaker company designs them with springs. Now when you talk about monitors on stands, you're adding a lot of variables, and maybe then springs would be advantageous.

Sorry - no word salad, just horse sense.
I've tried a lot of different spikes and cones over the years and was using BDR Cones as the best for a very long time. This was under my turntable, and speakers, and everything else. When I tried springs it wasn't even close, they were better in every way. There is much less glare, greater clarity, and a lower noise floor. Peak dynamics aren't better in the sense of having more volume but dynamics do improve because the noise floor is so much lower. Imaging improved probably for the same reason.  

Extension, the improvement in extension with springs is highly dependent on tuning them to the load. If the load is too light the top end is too prominent. Likewise if the load is too great the bottom end is bloated and top end extension rolled off. Get it right though and springs are significantly better than any cone, or spike, or anything else. Period. Been tried too extensively now to be anything but beyond doubt. 

That is the situation with plain springs. They beat all comers. Except they have no damping. So the one weakness of springs is the aforementioned tuning requirement. Even then though without damping there is a problem with resonance. I noticed this with springs under my turntable and figured the same had to be happening everywhere else. 

This is really what led me to try Townshend. I knew Max had figured out a way to accomplish damping, and engineered and tested to use the right amount.  

The results are easy to hear. Every instrument has so much more of its correct natural tone signature and timbre it is immediately obvious. It makes all your recordings come alive as never before. This all happens without ever drawing attention to anything. It never sounds like any one frequency is being accentuated or hyped or anything. Quite the opposite That is what happens with spikes- the ringing accentuates a part of the audio band that we associate with detail. It is not really detail. It is etch and ringing masquerading as detail. It is no exaggeration to say the sound on Podiums is a revelation. 

I don't know that I would recommend $2500 Podiums to a guy with $250 speakers. But my $4k Moabs? They for sure sound way better than $10k Ulfberht, and for $4k less. So for me they are a deal, and while not a deal for everyone they sure are for a lot more than have them now.