Repair your Cambridge Audio 840E volume contol issues


Many people with Cambridge Audio 840E (and I think 840A) preamps have reported strange volume behavior where the volume levels will suddenly change. Recall that these are the pre-amps with the relay controlled discrete resistor ladders and the Terrapin modules. There has been a lot of speculation posted on the web as to the root cause for this problem, including bad relays and bad volume knob encoders. Cambridge has since changed the design, removing the relays altogether and replacing them with solid state switches. Some, like myself, believe this is a step backward and would like to find a solution to the original faults with the discrete relays.

I own an early version of the 840E that was sent back to CA for re-work. Their service department added a separate relay board (containing the 28 relay array) with Omron G5V1 relays instead of the Massuse ME-3 relays that originally came from the factory. I was assured by Cambridge Service that the new relays cured the problem, but a few years later my volume control issues returned. I purchased a replacement set of Omron relays and replaced the Omrons supplied by service, and this did the trick for another 4 years or so. When looking into the specs on the G5V1, I found a most unusual disclaimer by the manufacturer:

"• Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON
continuously for long periods (without switching) can lead to
unstable contacts, because the heat generated by the coil itself
will affect the insulation, causing a film to develop on the contact
surfaces. Be sure to use a fail-safe circuit design that provides
protection against contact failure or coil burnout."

So what Omron is saying is that these were never designed for continuous use, as one might have in a volume control left at the same volume level for long periods of time. Further, it appears heat and high temperatures are at the root cause of the issue. If you look at the relay array for the volume control, the Cambridge design has these relays mounted as close together (side by side in two rows) as they can fit, and the center relays can get very hot. Due to the design of the volume ladder, not all relays are on at any one volume setting. There are also volume settings where the power generated by the relay array is maximum. From a document sent to me by Cambridge audio, it show that the current drawn by the relay array is a maximum of 271 mA at -32 dB, but drops to 131 mA at -30dB and 178 mA and -38 dB. The -32 dB area is where I see my volume instabilities, so it appears it may be related to power generation (and high temperatures) in the center mounted relays in the array. There are also high current levels at -16 dB and -8 dB (271mA) and -4, -2 dB. Of course, with the volume up above -8 dB, volume jumps to 0 dB are much less noticable when they occur.

So what can be done?

I was told by CA that the Omron replacement was the only one available. Turns out not to be true. I have found that Fujitsu makes a better relay that is plug and play replacement (SY-9W-K) for both the Omron and the Massuse relays. The Fujitsu relay has two contact options as well, one of which is much better for the ladder network. Let me explain. In the Omron spec sheet for the G5V1, there is a MINIMUM current rating of at least 1 mA. That means the circuit must flow a minimum of 1 mA to keep the contact resistance stable. Another condition violated by Cambridge Audio Engineering. The Massuse ME-3 is similar. The Fujitsu, however, has two contact configurations, one at 1 mA minimum and the second at 0.1 mA. The latter is more suitable of low current audio use. I believe the contact material (Pd/Ag under Au) is better as well. Finally, the Fujitsu relays are Japanese made whereas the Omron and Massuse are Chinese made. The Fujitsu relays have no continuous duty disclaimer in the spec sheet like Omron has.

Besides relay replacement, it is wise to do everything you can to keep internal temps down. I have my upper cover mounted on 1/4" stand offs to allow air to circulate inside the pre-amp. Mine is an early version without the vents. I have also mounted small aluminum heat sinks on the relay arrays to re-distribute the heat generated in the center units and lower their temperature.

Hope this post helps some of you who like the 840E and do not want to trash an otherwise fine sounding piece of gear due to the irritating volume control issues.
dhl93449

Showing 6 responses by dhl93449

Peter:

They will use probably the Omron or perhaps the Massuse (original OEM) relays. Both types will fail again in two or three years in my experience. The encoder is not the issue, but if they replace it no harm will be done.

I have repaired mine firstly with Omron relays which worked OK for three or four years, then recently failed. The Fujitsu relays are working flawlessly, but to be truthful, it may be too early to tell re their reliability. But they are clearly better suited for duty in this application, unlike the Omron relays which the manufacturer states (on the data sheet) are NOT suitable for continuous duty. When I pointed this out to CA tech support, they never responded back.

I would check to see if CA will replace with the Fujitsu relays, or if you can purchase the Fujitsu relays and have them install. Or, you can replace the Omron's with the Fujitsu relays yourself after they complete the repair. They are mounted on a replaceable pc board that can easily be removed from the main board.

Another tip which may extend the life of these relays is not to use the volume ramp on turn on or turn off.
BTW, as an update, the Fujitsu relays are working great. Have not had a volume issue since I put my set in last September.
Edumar:

PM me. I cannot post photos in the forum.

If you open your pre-amp you will see a cluster of relays right in the center of the large pc board. They should be mounted on a separate pc board. There are two clusters of 14 relays (7 in one row, 7 in another); 14 relays per channel. These are the volume ladder relays. Remove the connectors, and the two nuts holding the pc board in place on the main board. Then you can access the back of the board for desoldering. I would put socket strip connectors on the board, then plug you new relays into the socket strips. 
Socket strips are optional, of course. If you are careful with the soldering iron, and have a good vacuum de-soldering tool, soldering in the relays is OK. With socket strips, you only solder once, and any replacement afterward is easy. Do not overheat these pc boards or the traces will lift and then the board is useless. If you solder, you will probably not get more than two relays change outs before the board is destroyed unless you have a nice temp controlled industrial vacuum de-soldering tool like a Hakko. This is because the boards use plated through holes and it is very difficult to get all the solder out of the holes on the topside of the board where the relays sit. If the solder is not completely removed and you pull the relay off, you will lift the traces with the relay as it comes off.

I use high quality gold plated MACHINED socket pins/strips. You can get these at Mouser or Digikey electronics distributors. They are a bit tricky due to the odd spacing of the relay pins, and Cambridge did not space the relays exactly on 0.1" spacing. I cut the unused pins on positions that are not used but left them in the strip. I believe I ran the strips horizontally across the rows of relays. This requires the fewest socket pins, but the running length must be broken up into two or three sections, as the spacing tolerance is not exactly 0.1".
To answer some of the accumulated questions over the past few years:

My unit has not misbehaved once since I published the mods with the Fujitsu relays, and I use it every day. Note I did not replace the encoder, only the relays. I also have my unit set to turn on and shut off without the relays "clattering" through their volume ranges. I am sure this reduces wear and tear on them.

You can cool the unit better by mounting the top cover plate on .25" stand offs (or spacers) so you have an open slot for the hot air to exit. Just get longer metric screws to allow for the spacers.

If you want the relays in sockets, you have to build you own using "socket strips". The relay itself has odd pin spacing and there are no commercial sockets as far as I know. The socket strips are mounted as to cover an array of relays. As mentioned in the original posts, using these requires the removal of some of the contact positions (or cutting of the leads below these unused positions). Due to the reliability of the Fujitsu relays, I would probably not bother with sockets, and just solder the replacement relays and be done with it.

Glad to see folks are still repairing their CA 840s. Took mine out of service because I needed something with digital as well as analog inputs (Rotel RC-1590) but I don't think the Rotel is as good as the CA analog sound wise.

Regarding the encoder, I believe this is also a source of issues with the volume stability. I have another CA preamp, the 851D, and it also has volume stability issues. Sometimes the volume will not increase properly when the volume knob is increased. But it never suddenly pops the volume up like the 840 used to do. I believe what is common to both the 840 and 851 is the volume encoder.

I think you can get replacement encoders as parts from CA directly, if I am not mistaken. They will not, however, tell you what the replacement part number is so you cannot shop outside parts. If anyone has discovered an appropriate aftermarket part, please let us know.