Phono stage w/automatic Load-Impedanance.


Yes, automatic load impedance! The WLM PHONATA offers very high dynamics as a result of its very special design (see below)

A few years ago i purchased a slightly used demo unit from Australia. It was reasonable priced (mint- condition) WLM PHONATA reference MM/MC phono stage from respected WLM Acoustic brand (made in Europe). I use it since that day in my system.

a picture of the wlm phonata linked below:
http://audioaddiction.net.au/wp-content/uploads/2012/05/Phonata_3XL.jpg
http://audioaddiction.net.au/wp-content/uploads/2012/05/Phonata_4XL.jpg

When i bought mine demo it was newly released and totally different for previous WLM model (which was a smaller tube stage). The reference WLM Photana is not a tube stage. I'm not sure what's happened after, but probably it was not widely distributed, maybe they made first run and stop the production of this nice unit. They never updates their own website with info about this new unit. It's impossibe to find any reviews online and i assumed there are not so many users.

I wonder if anyone on AudioGon aware of this ice nproduct. I'm sure most of you familiar with amazing range of WLM speakers and different Tube Amps.

But do you know anything about WLM Photana Referense Phono Stage MM/MC ? It has some interesting features such as AUTOMATIC LOAD IMPEDANCE and 2 RIAA CURVES. It comprises pinnacle circuitry and design features that have never been realized before.

The PHONATA works with two-stage amplification:

• An inductive voltage amplification stage (for MC cartridges) using high
performance professional audio step-up transformers.

• A solid state current amplification stage, using specific MOS-FET transistors with tube-typical harmonic distortion characteristics.

The PHONATA offers utterly precise RIAA equalization:

• RIAA equalization is implemented across two amplification stages (within current amplification), providing a frequency expansion from 10Hz to 50kHz (Subsonic cut below 10Hz). Selected components (1% tolerance) are used.

• RIAA equalization can be selected from two positions with a switch at the back of the unit:

- Position “high” for records produced before 1965 or to improve the performance of somewhat “darker” sounding cartridges at higher frequencies. This position provides +3dB equalization as from 5kHz and +6dB as from 10kHz.

- Position “low” for all other records The PHONATA offers automatic adjustment of Load-Impedance:

• You don’t have to adjust the load-Impedance of your cartridge (plus the interconnect-cable between cartridge and Phono-Preamplifier). It goes automatically thanks to one ingenious piece of circuitry.

• You don’t have to adjust the source voltage of your cartridge as well.

• There are no micro-switches or any other mechanical contacts in the signal-path.

Technical Data:

MC-Input Impedance Range: < 100 Ohm to 50kOhm
MM-Input Capacity: 100pF
THD (Total Harmonic Distortion) @ 1kHz: 0.01%
SNR (Signal to Noise Ratio) MC: >72dB
SNR (Signal to Noise Ratio) MM: >85dB
Max. Input Voltage for MC-cartridges (theoretical value): 1200mV @ <1% THD
High Performance, Professional Type Step-Up Transformers.
128x128chakster

Showing 4 responses by intactaudio

Can someone please tell me how this resonance in the MHz range is being excited?

dave
I have simulated it using J_carrs model and indeed considering the simple ideal model a MC cartridge can in theory resonate with cabling capacitance in the Mhz range. However in spice, you are feeding a signal from a generator that has no problem creating a 0.2mv (or whatever) signal at the resonant frequency in order to excite it. I want to know is how a physical cartridge is generating its full rated output at these high frequencies in order to cause these issues.

dave
hey

The cartridge is not physically generating at these frequencies.

Agreed....

It's an electrical resonance at a particular frequency which can cause overload or oscillation.

doesn't this contradict your first statement? In order to excite a resonance you need an electrical signal at the frequency in question. I can see a cart generating signals up to say 100Khz but the resonances in question are a decade above that which is why I asked for the source of the excitation signal.

dave
Allen was a big proponent of using the "Neumann" time constant in his designs which shelves the response with a corner at 50Khz. Using a "normal" riaa puts the info at 750Khz about 32dB below the value at 20Khz but including the "neuman" drops that to 8dB difference.

dave