Looking for input: Best material for mid range cone


I had a surprise last night when I switched speakers in my system.  I've got a few pairs, but had been listening mainly to some Ascend Sierra 1, which have a polypropylene cone with a soft dome tweeter in a bookshelf design.  Anyway, I've got a pair of Tannoy Precision 6.1's, and swapped them in.  

The sound was noticeably different.  Piano sounded better, vocals had a finer quality as well, and the whole sound seemed a little more lively.  Now the Tannoys have silver interior wiring, a titanium tweeter in a coax design and are only rated for 75 watts. The cone material is some kind of pressed paper fibre.  And they are voiced to somewhat push the midrange.  But the sound was compelling.

I'm just wondering about cone material because some old Paradigms with Polypropylene were really not up to snuff, but they were quite old.  Any thoughts?
213runnin

Showing 2 responses by ohlala

I am repeating a bit. The textbook ideal material avoids resonance leading to phase distortion.  Another issue is avoiding frequency dependent vibration transmission radially through the cone, a property of solid materials but not air. (ESL is a clever answer as they do not require rigidity to avoid phase/distortion issues). Then the quality of material can depend on the manner in which it fails to handle those objectives, e.g. damping. These failings lead to a multitude of designs to approximate the ideal. A tip-off to complexity is the plethora of blended materials in cones. A lot of other factors come in to play that have been mentioned, and another is cost. I think it is hard to say what is best without more qualification. 

I have a pair of old, $2K speakers with Vifa PP midrange drivers. The midrange is certainly not THE best, but it is great compared to competition at that price including Paradigm.
ATC addresses off-aixs frequency response as well as dynamics with their CLD fabric cone. I was thinking about them with respect their successful low distortion, high-dynamic speakers:

"An ideal speaker system should have phase response linear with frequency, which in simple terms means that all frequencies produced by the driver reach the listener’s ear at the same time. This eliminates partial cancellation of certain frequencies due to their arrival at the listening point out of phase. Phase shift is a result of resonances in the drivers, as well as a consequence of the design of crossover network filters.

Careful driver design assures an amplitude response free from any broadband (low Q) resonance. Conventional design wisdom tells us that a stiff speaker cone is ideal for wide on-axis frequency response. However, poor off-axis frequency response and multiple resonances that color the sound make a non-flexible cone less than optimum. The conventional approach to resolving this problem is to highly damp the motion of the cone, but this dramatically reduces the efficiency of the speaker.

One of ATC’s approaches to eliminating resonant peaks in the driver is to use a heavily damped fabric cone with sufficient structural integrity to sustain high power levels. Constrained Layer Damping (CLD), an ATC innovation, uses a “sandwich” cone construction, with a damping layer molded between two lightweight fabric cones. As the cone assembly flexes, the damping material absorbs the shear energy between the two layers, offering dramatically more efficient damping than conventional methods. This design reduces harmonic distortion, minimizes resonances that affect on- and off-axis frequency response, and, since it offers less loss than standard damping techniques, dynamic headroom is improved.

The combination of mechanical damping and electrical damping from the power amplifier keeps the system tightly controlled, providing well defined bass and midrange detail."

http://www.transaudiogroup.com/wp-content/uploads/2015/06/ATC_Engineering_Goals_and_Approaches.pdf